3.4.52 \(\int \frac {(b x+c x^2)^2}{(d+e x)^{7/2}} \, dx\) [352]

3.4.52.1 Optimal result
3.4.52.2 Mathematica [A] (verified)
3.4.52.3 Rubi [A] (verified)
3.4.52.4 Maple [A] (verified)
3.4.52.5 Fricas [A] (verification not implemented)
3.4.52.6 Sympy [B] (verification not implemented)
3.4.52.7 Maxima [A] (verification not implemented)
3.4.52.8 Giac [A] (verification not implemented)
3.4.52.9 Mupad [B] (verification not implemented)

3.4.52.1 Optimal result

Integrand size = 21, antiderivative size = 143 \[ \int \frac {\left (b x+c x^2\right )^2}{(d+e x)^{7/2}} \, dx=-\frac {2 d^2 (c d-b e)^2}{5 e^5 (d+e x)^{5/2}}+\frac {4 d (c d-b e) (2 c d-b e)}{3 e^5 (d+e x)^{3/2}}-\frac {2 \left (6 c^2 d^2-6 b c d e+b^2 e^2\right )}{e^5 \sqrt {d+e x}}-\frac {4 c (2 c d-b e) \sqrt {d+e x}}{e^5}+\frac {2 c^2 (d+e x)^{3/2}}{3 e^5} \]

output
-2/5*d^2*(-b*e+c*d)^2/e^5/(e*x+d)^(5/2)+4/3*d*(-b*e+c*d)*(-b*e+2*c*d)/e^5/ 
(e*x+d)^(3/2)+2/3*c^2*(e*x+d)^(3/2)/e^5-2*(b^2*e^2-6*b*c*d*e+6*c^2*d^2)/e^ 
5/(e*x+d)^(1/2)-4*c*(-b*e+2*c*d)*(e*x+d)^(1/2)/e^5
 
3.4.52.2 Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.86 \[ \int \frac {\left (b x+c x^2\right )^2}{(d+e x)^{7/2}} \, dx=-\frac {2 \left (b^2 e^2 \left (8 d^2+20 d e x+15 e^2 x^2\right )-6 b c e \left (16 d^3+40 d^2 e x+30 d e^2 x^2+5 e^3 x^3\right )+c^2 \left (128 d^4+320 d^3 e x+240 d^2 e^2 x^2+40 d e^3 x^3-5 e^4 x^4\right )\right )}{15 e^5 (d+e x)^{5/2}} \]

input
Integrate[(b*x + c*x^2)^2/(d + e*x)^(7/2),x]
 
output
(-2*(b^2*e^2*(8*d^2 + 20*d*e*x + 15*e^2*x^2) - 6*b*c*e*(16*d^3 + 40*d^2*e* 
x + 30*d*e^2*x^2 + 5*e^3*x^3) + c^2*(128*d^4 + 320*d^3*e*x + 240*d^2*e^2*x 
^2 + 40*d*e^3*x^3 - 5*e^4*x^4)))/(15*e^5*(d + e*x)^(5/2))
 
3.4.52.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {1140, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (b x+c x^2\right )^2}{(d+e x)^{7/2}} \, dx\)

\(\Big \downarrow \) 1140

\(\displaystyle \int \left (\frac {b^2 e^2-6 b c d e+6 c^2 d^2}{e^4 (d+e x)^{3/2}}+\frac {d^2 (c d-b e)^2}{e^4 (d+e x)^{7/2}}-\frac {2 c (2 c d-b e)}{e^4 \sqrt {d+e x}}+\frac {2 d (c d-b e) (b e-2 c d)}{e^4 (d+e x)^{5/2}}+\frac {c^2 \sqrt {d+e x}}{e^4}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 \left (b^2 e^2-6 b c d e+6 c^2 d^2\right )}{e^5 \sqrt {d+e x}}-\frac {2 d^2 (c d-b e)^2}{5 e^5 (d+e x)^{5/2}}-\frac {4 c \sqrt {d+e x} (2 c d-b e)}{e^5}+\frac {4 d (c d-b e) (2 c d-b e)}{3 e^5 (d+e x)^{3/2}}+\frac {2 c^2 (d+e x)^{3/2}}{3 e^5}\)

input
Int[(b*x + c*x^2)^2/(d + e*x)^(7/2),x]
 
output
(-2*d^2*(c*d - b*e)^2)/(5*e^5*(d + e*x)^(5/2)) + (4*d*(c*d - b*e)*(2*c*d - 
 b*e))/(3*e^5*(d + e*x)^(3/2)) - (2*(6*c^2*d^2 - 6*b*c*d*e + b^2*e^2))/(e^ 
5*Sqrt[d + e*x]) - (4*c*(2*c*d - b*e)*Sqrt[d + e*x])/e^5 + (2*c^2*(d + e*x 
)^(3/2))/(3*e^5)
 

3.4.52.3.1 Defintions of rubi rules used

rule 1140
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x 
_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; 
FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.4.52.4 Maple [A] (verified)

Time = 1.97 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.76

method result size
pseudoelliptic \(-\frac {16 \left (\frac {15 x^{2} \left (-\frac {1}{3} c^{2} x^{2}-2 b c x +b^{2}\right ) e^{4}}{8}+\frac {5 d x \left (2 c^{2} x^{2}-9 b c x +b^{2}\right ) e^{3}}{2}+d^{2} \left (30 c^{2} x^{2}-30 b c x +b^{2}\right ) e^{2}-12 \left (-\frac {10 c x}{3}+b \right ) c \,d^{3} e +16 c^{2} d^{4}\right )}{15 \left (e x +d \right )^{\frac {5}{2}} e^{5}}\) \(108\)
derivativedivides \(\frac {\frac {2 c^{2} \left (e x +d \right )^{\frac {3}{2}}}{3}+4 b e c \sqrt {e x +d}-8 c^{2} d \sqrt {e x +d}-\frac {2 d^{2} \left (b^{2} e^{2}-2 b c d e +c^{2} d^{2}\right )}{5 \left (e x +d \right )^{\frac {5}{2}}}-\frac {2 \left (b^{2} e^{2}-6 b c d e +6 c^{2} d^{2}\right )}{\sqrt {e x +d}}+\frac {4 d \left (b^{2} e^{2}-3 b c d e +2 c^{2} d^{2}\right )}{3 \left (e x +d \right )^{\frac {3}{2}}}}{e^{5}}\) \(140\)
default \(\frac {\frac {2 c^{2} \left (e x +d \right )^{\frac {3}{2}}}{3}+4 b e c \sqrt {e x +d}-8 c^{2} d \sqrt {e x +d}-\frac {2 d^{2} \left (b^{2} e^{2}-2 b c d e +c^{2} d^{2}\right )}{5 \left (e x +d \right )^{\frac {5}{2}}}-\frac {2 \left (b^{2} e^{2}-6 b c d e +6 c^{2} d^{2}\right )}{\sqrt {e x +d}}+\frac {4 d \left (b^{2} e^{2}-3 b c d e +2 c^{2} d^{2}\right )}{3 \left (e x +d \right )^{\frac {3}{2}}}}{e^{5}}\) \(140\)
gosper \(-\frac {2 \left (-5 c^{2} x^{4} e^{4}-30 x^{3} b c \,e^{4}+40 x^{3} c^{2} d \,e^{3}+15 x^{2} b^{2} e^{4}-180 x^{2} b c d \,e^{3}+240 x^{2} c^{2} d^{2} e^{2}+20 x \,b^{2} d \,e^{3}-240 x b c \,d^{2} e^{2}+320 x \,c^{2} d^{3} e +8 b^{2} d^{2} e^{2}-96 d^{3} e b c +128 c^{2} d^{4}\right )}{15 \left (e x +d \right )^{\frac {5}{2}} e^{5}}\) \(141\)
trager \(-\frac {2 \left (-5 c^{2} x^{4} e^{4}-30 x^{3} b c \,e^{4}+40 x^{3} c^{2} d \,e^{3}+15 x^{2} b^{2} e^{4}-180 x^{2} b c d \,e^{3}+240 x^{2} c^{2} d^{2} e^{2}+20 x \,b^{2} d \,e^{3}-240 x b c \,d^{2} e^{2}+320 x \,c^{2} d^{3} e +8 b^{2} d^{2} e^{2}-96 d^{3} e b c +128 c^{2} d^{4}\right )}{15 \left (e x +d \right )^{\frac {5}{2}} e^{5}}\) \(141\)
risch \(\frac {2 c \left (c e x +6 b e -11 c d \right ) \sqrt {e x +d}}{3 e^{5}}-\frac {2 \left (15 x^{2} b^{2} e^{4}-90 x^{2} b c d \,e^{3}+90 x^{2} c^{2} d^{2} e^{2}+20 x \,b^{2} d \,e^{3}-150 x b c \,d^{2} e^{2}+160 x \,c^{2} d^{3} e +8 b^{2} d^{2} e^{2}-66 d^{3} e b c +73 c^{2} d^{4}\right )}{15 e^{5} \sqrt {e x +d}\, \left (x^{2} e^{2}+2 d e x +d^{2}\right )}\) \(153\)

input
int((c*x^2+b*x)^2/(e*x+d)^(7/2),x,method=_RETURNVERBOSE)
 
output
-16/15/(e*x+d)^(5/2)*(15/8*x^2*(-1/3*c^2*x^2-2*b*c*x+b^2)*e^4+5/2*d*x*(2*c 
^2*x^2-9*b*c*x+b^2)*e^3+d^2*(30*c^2*x^2-30*b*c*x+b^2)*e^2-12*(-10/3*c*x+b) 
*c*d^3*e+16*c^2*d^4)/e^5
 
3.4.52.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.17 \[ \int \frac {\left (b x+c x^2\right )^2}{(d+e x)^{7/2}} \, dx=\frac {2 \, {\left (5 \, c^{2} e^{4} x^{4} - 128 \, c^{2} d^{4} + 96 \, b c d^{3} e - 8 \, b^{2} d^{2} e^{2} - 10 \, {\left (4 \, c^{2} d e^{3} - 3 \, b c e^{4}\right )} x^{3} - 15 \, {\left (16 \, c^{2} d^{2} e^{2} - 12 \, b c d e^{3} + b^{2} e^{4}\right )} x^{2} - 20 \, {\left (16 \, c^{2} d^{3} e - 12 \, b c d^{2} e^{2} + b^{2} d e^{3}\right )} x\right )} \sqrt {e x + d}}{15 \, {\left (e^{8} x^{3} + 3 \, d e^{7} x^{2} + 3 \, d^{2} e^{6} x + d^{3} e^{5}\right )}} \]

input
integrate((c*x^2+b*x)^2/(e*x+d)^(7/2),x, algorithm="fricas")
 
output
2/15*(5*c^2*e^4*x^4 - 128*c^2*d^4 + 96*b*c*d^3*e - 8*b^2*d^2*e^2 - 10*(4*c 
^2*d*e^3 - 3*b*c*e^4)*x^3 - 15*(16*c^2*d^2*e^2 - 12*b*c*d*e^3 + b^2*e^4)*x 
^2 - 20*(16*c^2*d^3*e - 12*b*c*d^2*e^2 + b^2*d*e^3)*x)*sqrt(e*x + d)/(e^8* 
x^3 + 3*d*e^7*x^2 + 3*d^2*e^6*x + d^3*e^5)
 
3.4.52.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 787 vs. \(2 (138) = 276\).

Time = 0.52 (sec) , antiderivative size = 787, normalized size of antiderivative = 5.50 \[ \int \frac {\left (b x+c x^2\right )^2}{(d+e x)^{7/2}} \, dx=\begin {cases} - \frac {16 b^{2} d^{2} e^{2}}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} - \frac {40 b^{2} d e^{3} x}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} - \frac {30 b^{2} e^{4} x^{2}}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} + \frac {192 b c d^{3} e}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} + \frac {480 b c d^{2} e^{2} x}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} + \frac {360 b c d e^{3} x^{2}}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} + \frac {60 b c e^{4} x^{3}}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} - \frac {256 c^{2} d^{4}}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} - \frac {640 c^{2} d^{3} e x}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} - \frac {480 c^{2} d^{2} e^{2} x^{2}}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} - \frac {80 c^{2} d e^{3} x^{3}}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} + \frac {10 c^{2} e^{4} x^{4}}{15 d^{2} e^{5} \sqrt {d + e x} + 30 d e^{6} x \sqrt {d + e x} + 15 e^{7} x^{2} \sqrt {d + e x}} & \text {for}\: e \neq 0 \\\frac {\frac {b^{2} x^{3}}{3} + \frac {b c x^{4}}{2} + \frac {c^{2} x^{5}}{5}}{d^{\frac {7}{2}}} & \text {otherwise} \end {cases} \]

input
integrate((c*x**2+b*x)**2/(e*x+d)**(7/2),x)
 
output
Piecewise((-16*b**2*d**2*e**2/(15*d**2*e**5*sqrt(d + e*x) + 30*d*e**6*x*sq 
rt(d + e*x) + 15*e**7*x**2*sqrt(d + e*x)) - 40*b**2*d*e**3*x/(15*d**2*e**5 
*sqrt(d + e*x) + 30*d*e**6*x*sqrt(d + e*x) + 15*e**7*x**2*sqrt(d + e*x)) - 
 30*b**2*e**4*x**2/(15*d**2*e**5*sqrt(d + e*x) + 30*d*e**6*x*sqrt(d + e*x) 
 + 15*e**7*x**2*sqrt(d + e*x)) + 192*b*c*d**3*e/(15*d**2*e**5*sqrt(d + e*x 
) + 30*d*e**6*x*sqrt(d + e*x) + 15*e**7*x**2*sqrt(d + e*x)) + 480*b*c*d**2 
*e**2*x/(15*d**2*e**5*sqrt(d + e*x) + 30*d*e**6*x*sqrt(d + e*x) + 15*e**7* 
x**2*sqrt(d + e*x)) + 360*b*c*d*e**3*x**2/(15*d**2*e**5*sqrt(d + e*x) + 30 
*d*e**6*x*sqrt(d + e*x) + 15*e**7*x**2*sqrt(d + e*x)) + 60*b*c*e**4*x**3/( 
15*d**2*e**5*sqrt(d + e*x) + 30*d*e**6*x*sqrt(d + e*x) + 15*e**7*x**2*sqrt 
(d + e*x)) - 256*c**2*d**4/(15*d**2*e**5*sqrt(d + e*x) + 30*d*e**6*x*sqrt( 
d + e*x) + 15*e**7*x**2*sqrt(d + e*x)) - 640*c**2*d**3*e*x/(15*d**2*e**5*s 
qrt(d + e*x) + 30*d*e**6*x*sqrt(d + e*x) + 15*e**7*x**2*sqrt(d + e*x)) - 4 
80*c**2*d**2*e**2*x**2/(15*d**2*e**5*sqrt(d + e*x) + 30*d*e**6*x*sqrt(d + 
e*x) + 15*e**7*x**2*sqrt(d + e*x)) - 80*c**2*d*e**3*x**3/(15*d**2*e**5*sqr 
t(d + e*x) + 30*d*e**6*x*sqrt(d + e*x) + 15*e**7*x**2*sqrt(d + e*x)) + 10* 
c**2*e**4*x**4/(15*d**2*e**5*sqrt(d + e*x) + 30*d*e**6*x*sqrt(d + e*x) + 1 
5*e**7*x**2*sqrt(d + e*x)), Ne(e, 0)), ((b**2*x**3/3 + b*c*x**4/2 + c**2*x 
**5/5)/d**(7/2), True))
 
3.4.52.7 Maxima [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.03 \[ \int \frac {\left (b x+c x^2\right )^2}{(d+e x)^{7/2}} \, dx=\frac {2 \, {\left (\frac {5 \, {\left ({\left (e x + d\right )}^{\frac {3}{2}} c^{2} - 6 \, {\left (2 \, c^{2} d - b c e\right )} \sqrt {e x + d}\right )}}{e^{4}} - \frac {3 \, c^{2} d^{4} - 6 \, b c d^{3} e + 3 \, b^{2} d^{2} e^{2} + 15 \, {\left (6 \, c^{2} d^{2} - 6 \, b c d e + b^{2} e^{2}\right )} {\left (e x + d\right )}^{2} - 10 \, {\left (2 \, c^{2} d^{3} - 3 \, b c d^{2} e + b^{2} d e^{2}\right )} {\left (e x + d\right )}}{{\left (e x + d\right )}^{\frac {5}{2}} e^{4}}\right )}}{15 \, e} \]

input
integrate((c*x^2+b*x)^2/(e*x+d)^(7/2),x, algorithm="maxima")
 
output
2/15*(5*((e*x + d)^(3/2)*c^2 - 6*(2*c^2*d - b*c*e)*sqrt(e*x + d))/e^4 - (3 
*c^2*d^4 - 6*b*c*d^3*e + 3*b^2*d^2*e^2 + 15*(6*c^2*d^2 - 6*b*c*d*e + b^2*e 
^2)*(e*x + d)^2 - 10*(2*c^2*d^3 - 3*b*c*d^2*e + b^2*d*e^2)*(e*x + d))/((e* 
x + d)^(5/2)*e^4))/e
 
3.4.52.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.22 \[ \int \frac {\left (b x+c x^2\right )^2}{(d+e x)^{7/2}} \, dx=-\frac {2 \, {\left (90 \, {\left (e x + d\right )}^{2} c^{2} d^{2} - 20 \, {\left (e x + d\right )} c^{2} d^{3} + 3 \, c^{2} d^{4} - 90 \, {\left (e x + d\right )}^{2} b c d e + 30 \, {\left (e x + d\right )} b c d^{2} e - 6 \, b c d^{3} e + 15 \, {\left (e x + d\right )}^{2} b^{2} e^{2} - 10 \, {\left (e x + d\right )} b^{2} d e^{2} + 3 \, b^{2} d^{2} e^{2}\right )}}{15 \, {\left (e x + d\right )}^{\frac {5}{2}} e^{5}} + \frac {2 \, {\left ({\left (e x + d\right )}^{\frac {3}{2}} c^{2} e^{10} - 12 \, \sqrt {e x + d} c^{2} d e^{10} + 6 \, \sqrt {e x + d} b c e^{11}\right )}}{3 \, e^{15}} \]

input
integrate((c*x^2+b*x)^2/(e*x+d)^(7/2),x, algorithm="giac")
 
output
-2/15*(90*(e*x + d)^2*c^2*d^2 - 20*(e*x + d)*c^2*d^3 + 3*c^2*d^4 - 90*(e*x 
 + d)^2*b*c*d*e + 30*(e*x + d)*b*c*d^2*e - 6*b*c*d^3*e + 15*(e*x + d)^2*b^ 
2*e^2 - 10*(e*x + d)*b^2*d*e^2 + 3*b^2*d^2*e^2)/((e*x + d)^(5/2)*e^5) + 2/ 
3*((e*x + d)^(3/2)*c^2*e^10 - 12*sqrt(e*x + d)*c^2*d*e^10 + 6*sqrt(e*x + d 
)*b*c*e^11)/e^15
 
3.4.52.9 Mupad [B] (verification not implemented)

Time = 9.27 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.98 \[ \int \frac {\left (b x+c x^2\right )^2}{(d+e x)^{7/2}} \, dx=-\frac {2\,\left (8\,b^2\,d^2\,e^2+20\,b^2\,d\,e^3\,x+15\,b^2\,e^4\,x^2-96\,b\,c\,d^3\,e-240\,b\,c\,d^2\,e^2\,x-180\,b\,c\,d\,e^3\,x^2-30\,b\,c\,e^4\,x^3+128\,c^2\,d^4+320\,c^2\,d^3\,e\,x+240\,c^2\,d^2\,e^2\,x^2+40\,c^2\,d\,e^3\,x^3-5\,c^2\,e^4\,x^4\right )}{15\,e^5\,{\left (d+e\,x\right )}^{5/2}} \]

input
int((b*x + c*x^2)^2/(d + e*x)^(7/2),x)
 
output
-(2*(128*c^2*d^4 + 8*b^2*d^2*e^2 + 15*b^2*e^4*x^2 - 5*c^2*e^4*x^4 + 40*c^2 
*d*e^3*x^3 - 96*b*c*d^3*e + 240*c^2*d^2*e^2*x^2 - 30*b*c*e^4*x^3 + 20*b^2* 
d*e^3*x + 320*c^2*d^3*e*x - 240*b*c*d^2*e^2*x - 180*b*c*d*e^3*x^2))/(15*e^ 
5*(d + e*x)^(5/2))